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Abstract

In this work, we study the oscillations that appear in the photon statistics
of a squeezed state in a process that allows teleportation of continuous
spectrum variables. In some cases, comparisons are made with the theory
of photodetection. The most remarkable result is observed when the fidelity of
teleportation is optimized, in that case the teleported statistics is equal to the
counting statistics of photoelectrons in non-ideal photocount measurements.
We also determine the effect of one-photon subtraction from each arm of the
Einstein—Podolsky—Rosen source to enhance the quality of the teleportation
process.

PACS numbers: 03.65.—w, 03.65.Ud, 03.67.Mn

1. Introduction

In a quantum teleportation experiment [1, 2] an unknown state is sent by Alice (the sender)
to Bob (the receiver) by making use of an entangled Einstein—Podolsky—Rosen (EPR) source,
shared by Alice and Bob. Alice makes some measurements in her own sub-system and sends
this information to Bob, via a classical channel. In this process, the main feature is the
quantum entanglement of the EPR source that allows the collapse of Bob’s sub-system due to
the measurements done by Alice.

In the simplest case, quantum teleportation is performed on systems with a two-
dimensional Hilbert space [1]. For this situation, experimental demonstrations have been
performed on single-photon polarized states [3] and teleportation of a polarization state with
a complete Bell state measurement [4].

The extension to infinite-dimensional systems was suggested by Vaidman [5] in the context
of teleportation of variables with a continuous spectrum, and for this reason we will talk about
continuous teleportation. Some specific models were studied later by several authors [6—10].

Here, we are interested in studying how efficiently some relevant physical properties of
a quantum state can be teleported, and we will focus on teleportation of the quantities that
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better characterize the quantum nature of the state under study. In [13, 14], some teleported
quadrature fluctuations have been studied. In this work, we will consider the teleportation of
the oscillations which appear in the photon statistics of squeezed states. As we know, these
oscillations are one of the most impressive manifestations of the quantum nature of squeezed
states [15, 16].

This paper is organized as follows. In section 2, we present some basic mathematical
concepts used to find in section 3 the teleported statistics of the squeezed states. In section 4,
the theory of photodetection is briefly reviewed in order to establish the main result of the
paper: when the fidelity of teleportation is optimized, the teleported statistics is equal to
the counting statistics of photoelectrons in non-ideal photocount measurements. Section 5
considers the effect of one-photon subtraction from each arm of the EPR source to enhance
the quality of the teleportation process. Finally, in section 6 we present our conclusions.

2. The teleportation operator and coherent states

Hofmann et al [11] introduced the continuous variable teleportation operator T54(g, ¢, ¥),
that allows one to write the output state (the state obtained by Bob in the teleportation process)
as

Vg, q,v))B =Tpa(g, q,¥)|V¥in)a )]

where |1i,) 4 1s the state that Alice wants to send to Bob. The operator Tz 4 has the following

form:
[ o2\/2
T5a(8.4.7) =< ) > 4" D(gy)In)pa(n|Da(=y). 2)
T n=0
The indices A and B stand for input (Alice) and output (Bob) states, respectively, which belong
to two different Hilbert spaces, g is the gain at Bob’s end and ¢q is a parameter related to the
degree of squeezing of a two-mode imperfect EPR source, which in this case corresponds to
a two-mode squeezed vacuum state

[0¢]
[EPR) = /1 —¢>) " q"|n,n)as.
n=0

The variable y is acomplex number associated with the result of ahomodyne measurement
done by Alice. The norm of the teleported state,

W(y) = {(¥i(g. 4. V)i (8. 9. ¥))B 3)
can be interpreted as the probability density of getting y in the measurement performed by
Alice.

It is easy to show that the teleportation operator acting on a coherent state of Alice’s space
produces a displaced coherent state in the Bob space,

Tga(g, g, v)la)a = fo(8.q, v, @)|gy +q(a —y))B “4)
where
_ 2N\ 12 1 1
fo(g.q.v.0) = ( ) exp {—50 — e =y + (=g (ay” - ya*)} &)
Since the Hermitian conjugate of the teleportation operator Tg 4 can be written as
T g 1/2 oo
Tpa(8.q,v) = < - ) > 4" Da(y)In)an(n| Dp(—gy), (6)

n=0
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it is simple to show that

Tha(8.9.v) = Tan(1/g.q.8Y). (7)
From equations (4) to (7), we easily get

TiA(8.q. Vs = fo(1/g.q. gv. @)y +q(@ — g¥))a 8)

B(a|Tpa(g. 9, V) = fo(1/8. 4,8y, )a(B +q(a — gy)l ©)

Equations (8) and (9) will be useful in section 3 to find the photon statistics of the teleported
state.

3. Photon statistics

The average teleported density matrix p, (with the average taken over the y measurements) is
given by

pr = / Py T, 4, V)W) aa Winl Tho (8, 4, ) (10)
and therefore the teleported photon statistics is
P = gim|p;Im)g
=/d2y|3<m|TBA<g,q,y>|1/fm>A|2. (11)

In order to evaluate the above expression, we have to compute the matrix element

B{m|Tea(g, q, ¥)|Vin)a. (12)

Consider the coherent state (o = x| with x € i. The inner product with the teleported
state [,(g, g, v)) 5 is

o0 xn
B x| Toa(8: 4. Min)a = ¢ " —= p(nlToa(8. 4. VWi)ar  (13)
n=0 \/m
It is not difficult to show that
(m|Tpa( N Win) S m(e’”/2 (x|Tga( ) Win)a) (14)
B BA 87%)/ lnA_m ax B BA g1q9y in/A 0

where

BX|Tpa(g: g, V)IWin)a = f5(1/8.q, 8V, X)aly +q(x — g¥)[¥in)a.  (15)

In our particular case, we are interested in the statistics of the teleported state when the
input is a squeezed state. For these states one has

(@|B. r,0) = (sechr)'?exp {—1(ja|* + |B|*) + a* B sechr

— 1l (@*)* —e7(B)*]tanhr} . (16)
Replacing this expression on the right-hand side of equation (15) we can compute the matrix
element g(m|Tpa(g,q, Y)|¥in)a using equation (14). Finally, integrating the square of the
matrix element one can obtain the photon statistics that appear in equation (11). Since the

analytical expression for the photon statistics is not particularly illustrative, we will only show
some numerical results displayed in figures 1 and 2.
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Figure 1. Full circles: squeezed state photon statistics. Open circles: teleported photon statistics.
a=4r=2,0=0,andg=09,g=1.
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Figure 2. Full circles: squeezed state photon statistics. Open circles: teleported photon statistics.
a=4,r=2,6=0,andg =g =09.

In order to compare the teleported statistics with the photon statistics of the original state
sent by Alice, let us recall the photon statistics of squeezed states:

(tanh r)" I ;
P, = |(m|B,r,0)* = ileoshr P {—|ﬂ|2+ E[e ‘g +e9(,3*)2]tanhr}
2

x a7

—i6/2
 (Grmmre)
2 coshr sinhr
In figures 1 and 2 we show the photon statistics of a squeezed state P,, and its teleported
version P! for two cases: ¢ = 0.9, g = 1 (figure 1) and g = ¢ = 0.9 (figure 2).
Although the phase space interference, typically represented by the oscillations in the
photon statistics of the input state [15], is also present in the teleported version, these
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Figure 3. Full circles: teleported photon statistics. Open circles: photocount statistics with
efficiency n°f. ¢ =4,r =2, =0,and¢g = 0.9, g = 1.

oscillations appear attenuated and can be completely destroyed when the EPR source is
poorly correlated or there are no large gains at Bob’s end.

4. Photodetection theory

From the photodetection theory, we know that the probability of detecting m photoelectrons,
in a measurement with a detector of efficiency n < 1, is given by [17]
=\ (n
m n—m
PP =3 (m) 7" (L= m)"" oun (18)
n=m

where p,, = P, is the original photon statistics of the radiation that is affecting the detector.

It is interesting to note that for g = ¢, the photon statistics of the teleported state
P! is precisely the photocount statistics P with efficiency n = g%>. When we plot the
photoelectron counting statistics of a squeezed state, equation (18) with n = g = 0.81, we
get exactly the teleported statistics of figure 2. A better grasp of this fact can be obtained by
considering the case g # ¢. In this case, we cannot find an efficiency that allows us to generate
a photoelectron statistics identical to the teleported statistics. However, based on numerical
evidence, for values of g that are near ¢, we found an approximate matching when we use the
following expression for the efficiency:

(g —q)* }
(g+a)? )’
As we can see in this case, for g = ¢ one obtains 7 = ¢ (a perfect matching) and for small
differences between g and ¢ we have 0 < n < 1.

In figure 3 we observe a good agreement between the photoelectron statistics and the
photon statistics of the teleported state. In this case we have g = 1 and ¢ = 0.9.

(g, q) = gq eXP{ (19)

5. Teleportation with photon subtraction

It has been previously shown that the correlation of the EPR source can be modified by
one-photon addition or one-photon subtraction via conditional measurements [12, 13]. This
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Figure 4. Full circles: squeezed states photon statistics. Open circles: normal teleported photon
statistics. Open squares: one-photon subtracted teleported photon statistics. « =4,r =2,0 =0,
andg =09, g =1.

can be done experimentally using beam splitters in each arm of the EPR source. Here, we
will consider photon subtraction since it is a good choice to increase the EPR correlation,
enhancing the teleportation capability of our system.

In this case, the photon statistics is

PY = /d2ﬁ|3<n|T;i>(g,q,y)h/fm)A 2 (20)

where the corresponding matrix element g (1| Téi) (8,9, Y)|V¥in)a is

(I T5 (8,4, V)1 ¥in) a ZJ%{<3%> (/5 (xI T4 (2, q, y)wmu)}x_o @
and where the teleportation operator with one-photon subtraction is

(1—g)*\"* &
Ti) (8. q.v) = (m) > q"(n+1)Dg(gy)In)sa(n| Da(—y). (22)

n=0

Itis simple to see that the above operator can be written in terms of the normal teleportation
operator as

1
788, 4. y)-q(—J_)a Toa(g.q. y>+\/_qTBA<g an. @3
From this we easily get
(s) _q(-q%
B<x|TBA(g9qv y)h[fm) \/— 8 {B x|TBA(g q, y)hhm) }
+ 24)

1
————3{x|TBa(g, q, ¥)|V¥in) A
V1+4q?

Then, we can obtain the teleported statistics with one-photon subtraction following the
same procedure as in the normal teleportation calculations of section 4. In figure 4 we show the
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comparison between the photon statistics of a squeezed state, its normally teleported version
and the teleported with one-photon subtraction version.

We observe that, for g not too different from ¢, the photon subtraction reduces the
difference between the original and the teleported oscillations, thus showing that the photon
subtraction indeed improves the correlation of the EPR source and the whole teleportation
process.

6. Conclusions

We have studied the oscillations in the teleported photon statistics of a squeezed state, and
compared these with the original oscillations varying various physical parameters related to
the correlation of the EPR source and the gain at Bob’s end in the teleportation process.

We report the following results:

e In the ¢, g ~ 1 region, we observe a damped oscillation pattern similar to the input one.

e For g = g, that is, when the fidelity of the continuous teleportation process is optimized
[14], a close comparison with the photodetection theory shows that the teleported statistics
and the photoelectron counting statistics with efficiency n = ¢ are exactly the same.
For regions of the parameter space in which g ~ ¢, but not equal, we never have an
exact matching. However, from numerical evidence, we nearly reproduce the teleported

statistics by taking n°% (g, ¢) = gq exp { (é :;]))22 } in the photoelectron counting statistics.

e Using the fact that the conditional subtraction of one photon from each arm of the EPR
source improves its correlation, we calculate the photon statistics for this case, getting an
improvement in the oscillations of the teleported photon statistics.
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